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Vibrating systems usually have an in"nite number of degrees of freedom (d.o.f.). Since
a "nite number of measurement d.o.f. can only capture certain deformation patterns, the
spatial characteristics of vibrating systems are only partially observed experimentally. This
research examines the e!ects of spatial truncation on non-linear system identi"cation. It is
demonstrated that truncation produces frequency correlated noise, which cannot be
extracted completely with traditional techniques. The goal of this article is to provide insight
and practical recommendations for diagnosing and/or compensating for errors due to
spatial truncation in multiple-d.o.f systems. The article demonstrates that non-linear
dynamic systems should be instrumented with su$cient sensors; model properties should be
used in addition to the input}output data; and additional temporal data should be collected
to help diagnose errors due to spatial truncation.

( 2000 Academic Press
1. INTRODUCTION

Experimental structural dynamic models are restricted in time, frequency, and space. These
restrictions are due to practical limitations on the data acquisition or simulation processes.
For example, "nite sample rates are used to acquire time histories; consequently, the
spectral frequency resolution and frequency range of the data is "nite as well. The limitation
on frequency resolution has long been recognized as a source of bias (leakage) errors [1].
Although the limitations in frequency range and also sensor dynamic range are often
overlooked, they are nevertheless a signi"cant source of bias errors. Furthermore, this bias
is spatial in nature. The errors actually represent unobserved dynamics of the system in the
"ltered data. These residual errors in modal or linear vibration data have been well
described in the literature [2].

In order to compensate for dynamic residual (bias) errors in linear system identi"cation,
modal models of vibrating systems are constructed by estimating and then incorporating
the residual dynamics. For instance, researchers have demonstrated that residual
information is key to accurately describing the e!ects of structural modi"cations on
vibrating systems [3}6]. But limitations on the frequency range are not the only source of
unobserved dynamics. Residual dynamics also result from the inability to instrument
structures with su$cient input/output sensors with in"nite dynamic range to fully describe
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all of the modes of vibration. These practical limitations on the number and dynamic range
of the input and output measurement degrees of freedom (d.o.f.s) introduces spatial
truncation in the modal model. For example, spatial truncation prevents modal analysts
from estimating certain modal vectors when transducers are not well placed. Although
spatial truncation in linear vibration analysis represents a second order e!ect, spatial
truncation in non-linear vibration analysis is a more serious problem. This paper discusses
spatial truncation and its e!ects on non-linear system identi"cation and parameter
estimation.

Many system identi"cation techniques are available for estimating models of non-linear
vibrating systems. The literature gives a comprehensive review of each of these techniques
[7}12]. All of these techniques depend to some extent on prior knowledge of the spatial
non-linear structure [13]. Knowledge of the &&structure'' implies knowledge of the presence,
class, and location of all non-linear elements in the system. A spatial approach to non-linear
dynamic analysis was introduced in reference [14] and is implemented in references
[7, 8, 15, 16] to derive novel characterization and identi"cation techniques for non-linear
systems. The fundamental concept in the spatial approach is that structural non-linearities
create internal feedback (feedforward) forces, which are functions of the output (input)
d.o.f.s. Since spatial resolution of the output d.o.f.s determines the "delity of non-linear
models, the absence of spatial information must be addressed in the context of non-linear
system characterization and identi"cation.

Three speci"c, representative 2-d.o.f. analytical systems are used in the next section to
introduce the concept of spatial truncation in non-linear analysis. The results from that
section are then extended and generalized to include the e!ects of spatial truncation on
more complicated multiple-degree-of-freedom (m.d.o.f.) non-linear system models.
Common examples of truncation in experimental data are described and some conclusions
are drawn. The non-linear analysis techniques in references [7, 8] are used as a vehicle for
studying the e!ects of spatial truncation on non-linear system identi"cation.

2. ASPECTS OF SPATIAL TRUNCATION

Three di!erent 2-d.o.f. non-linear systems are shown in Figure 1. Each system has cubic
hardening sti!ness non-linearities with parameters k

i
in di!erent locations and all the

systems have the identical underlying linear structure. A general frequency domain
expression which describes all of these systems can be derived using the spatial perspective
in reference [7]:
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Figure 1. Three-multiple-degree-of-freedomnon-linear systems used to illustrate the e!ects of spatial truncation
on non-linear structural dynamic models: (a) System 1 with cubic hardening sti!ness to ground at d.o.f. 1,
(b) System 2 with cubic hardening sti!nesses to ground at d.o.f.s 1 and 2, (c) System 3 with cubic hardening
sti!nesses to ground at d.o.f. 1 and between d.o.f.s 1 and 2.

TABLE 1

¹wo degree-of-freedom non-linear system parameters

Linear Linear Non-linear
Mass (kg) damping (Nm/s) sti!ness (N/m) parameters (1/m2)
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SPATIAL TRUNCATION 147
Systems 1}3 are constants, k
i
. Lastly, MB

ni
N is a vector of zeros and ones that determines the

location of each of the N
n
non-linear elements. This vector is di!erent for each of the systems

in Figure 1. The system parameters for the three analytical systems are given in Table 1.
The next three sections examine the e!ects of spatial truncation on the model in equation

(1) for Systems 1}3. The available information for each system consists only of a 30 N
root-mean-square, broadband random (normal distribution) applied force at d.o.f. 1,
F
1
(u)"F[ f

1
(t)], and the measured response at d.o.f. 1, X

1
(u)"F[x

1
(t)]. Moreover, the



TABLE 2

Simulation parameters for pure random excitation

Dt (s) Blocksize Averages Nyquist frequency (Hz) Percent overlap

0)00625 4096 150 80 0)70
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response at d.o.f. 2 has been truncated from the available simulation data. It is
demonstrated how the unobserved dynamics of d.o.f. 2 a!ect the system identi"cation
process di!erently for the three di!erent systems. The simulation parameters used for all
three systems are given in Table 2. A fourth order Runge}Kutta numerical integration
scheme was used to simulate the system responses.

2.1. SYSTEM 1

MB
n1

N for System 1 is equal to [1 0]T; therefore, the "rst line of equation (1) for system 1 is
given by
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in which X
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(u)"F[(x
1
(t))3]. The FRFs of the underlying linear and non-linear systems

are shown in Figure 2. The distortion of the linear system FRF in the direction of higher
frequencies is indicative of the non-linear hardening sti!ness to ground at d.o.f. 1.

After X
1
(u), F

1
(u), and X

n1
(u) are measured or calculated from measured time records,

a least-squares solution of equation (3) with spectral averaging is used to simultaneously
estimate the FRF of the truncated underlying linear system, H

L11
(u), and the non-linear

sti!ness parameter, k
1
, from the input and output time data. This identi"cation procedure is

called non-linear identi"cation through feedback of the outputs (NIFO) [14]. The ability to
simultaneously estimate the non-linear parameters and the FRFs of the underlying
(nominal) linear system in a single computation is an attractive feature of NIFO. Note that
equation (3) indicates there are two forces acting on d.o.f. 1: the external force and the
internal feedback force due to the non-linearity. Because the non-linear internal force on
d.o.f. 1 is only a function of the observed motion of d.o.f. 1, the NIFO procedure is expected
to succeed in this case.

The results of the NIFO procedure for System 1 are shown in Figures 3 and 4. Note that
there is near perfect agreement between the estimated and true linear FRFs. The value of
k
0
k
1

is also accurately estimated to be 5e5 N/m3 from the spectral mean of Figure 4 within
0)5% error. Figure 5 is a plot of the internal force due to the non-linearity. This force
characteristic clearly re#ects a non-linear, zero memory, cubic sti!ness element to ground at
d.o.f. 1.

In general, if the unobserved dynamics between the measured and truncated d.o.f.s do not
contribute to the internal non-linear feedback, spatial truncation in the data does not a!ect
the parameter estimation process. This is the case for System 1; however, unobserved
dynamics create serious errors in the non-linear parameter estimates for Systems 2 and 3.



Figure 2. Comparison of the frequency response function of the underlying linear system and the non-linear
system of System 1 with a cubic hardening sti!ness to ground at d.o.f. 1: **, linear system; } } }, non-linear
system.
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2.2. SYSTEM 2

The value of MB
n1

N for System 2 is the same as for System 1, [1 0]T. MB
n2

N for System 2 is
equal to [0 1]T; therefore, the "rst line of equation (1) for System 2 is given by
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(u) represent the truncated

dynamics. For this system, the motions of both masses determine the internal feedback
forces due to the non-linearities; however, the motion of d.o.f. 2 is not observed. This means
that the internal force due to the (x

2
(t))3 non-linearity cannot be generated from the data in

the parameter estimation process. All standard parameter estimation procedures, including
NIFO, are expected to fail in this case.

The results of the NIFO procedure for System 2 are shown in Figures 6 and 7. Note the
poor quality of the underlying linear FRF estimate near the second mode of vibration. The
parameter estimate k

1
(u) is also poor near the second mode of vibration (Figure 7). The

goal of this research is to determine why the estimates in [H(u)] are poor, how to
diagnose/detect inaccuracies due to truncation, and what to do when there are truncation



Figure 3. Comparison of the true frequency response function of the underlying linear system, the measured
frequency response function of the non-linear system, and the estimated frequency response function of the
underlying linear system using NIFO for System 1 with a cubic hardening sti!ness to ground at degree of freedom
1: **, linear system; } }}, non-linear system; ) ) ) ), linear estimate.
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errors in the estimates. The following three points will help in answering these
questions: (1) correlated noise due to the truncation is diagnosed using the unobserved
dynamics; (2) unobserved dynamics in the form of correlated noise are equivalent to
unmeasured internal inputs; (3) make all the right measurements and use data completely and
e.ciently.

According to equation (6), spatial truncation in measured data is a source of correlated
noise in the experimental model. The correlated noise consists of everything not extracted
from the data. Because there is correlated noise, ordinary least squares does not have the
best set of weights to produce unbiased estimates. The "rst step in diagnosing these errors is
to recognize the correlated noise as dynamic, which implies changes as a function of
frequency. This is evident in Figure 6, in which the estimate of the underlying linear FRF is
accurate through the "rst mode of vibration, loses accuracy in the antiresonance as the
second mode of vibration is reached, and then becomes accurate again beyond the second
mode of vibration. Moreover, the unobserved dynamics provide the means to detect
inaccuracies due to truncation.

The second step is to associate correlated noise with the unmeasured non-linear internal
force at the truncated d.o.f. 2. This association helps to explain why the estimate is poor
through the antiresonance and near the second mode of vibration. In fact, the non-linear
spring to ground at d.o.f. 2 is responsible for the correlated noise and is highly active in this
frequency range. Figure 8 gives quantitative proof of this statement. The upper plot is the
imaginary part of the k

0
k
1
(u) estimate and the lower plot is the FRF between the observed

non-linear spectrum X
n1

and the unobserved non-linear spectrum X
n2

. When the
imaginary part of the parameter estimate reaches a maximum, the error due to spatial



Figure 4. Estimate of the non-linear parameter k
0
k
1
(u) in System 1 with a cubic hardening sti!ness to ground at

degree of freedom 1.

Figure 5. Static (zero memory) characteristic of the non-linear hardening cubic sti!ness to ground at d.o.f. 1.
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Figure 6. Comparison of the true frequency response function of the underlying linear system, the measured
frequency response function of the non-linear system, and the estimated frequency response function of the
underlying linear system using NIFO for System 2 with two cubic hardening sti!nesses to ground at d.o.f.s 1 and 2:
**, linear system; } } }, non-linear system; ) ) ) ), linear estimate.
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truncation is a maximum. Note that the frequency where the maximum error occurs
matches the frequency where the maximum correlation between the observed ((x

1
(t))3) and

unobserved ((x
2
(t))3) non-linear functions occurs.

The only way to fully diagnose and completely eliminate spatial truncation is to make the
right measurements and use all the available data. This is a subtle but important point. For
example, consider the parameter estimate in Figure 7. Recall that measured data, x

1
(t), f

1
(t),

and (x
1
(t))3, are used in the NIFO procedure to estimate the parameter by making an

assumption about the form of the non-linearity, which is a constant parameter cubic spring
to ground at d.o.f. 1 (refer to Figure 1). Stated di!erently there are actually four pieces of
data: the three measured or simulated time histories and the assumption about non-linear
structure.

Next, compare the assumptions with the estimate in Figure 7. The estimate should be real
since the non-linearity is static; however, there is a strong imaginary component near the
second mode of vibration, which indicates that non-linear internal forces of some kind enter
through xR

1
(t). The unobserved dynamics at d.o.f. 2 #ow towards d.o.f. 1 through xR

1
(t).

Conversely, the k
0
k
1

parameter estimate is accurate (+5e5 N/m3) where the imaginary
component is zero (0}2 and 12}20 Hz).

In addition to the assumption about the non-linear structure, there is another piece of
information involving the underlying linear FRF estimate, H

L11
. According to Hilbert

transform theory [17}19], FRFs that describe causal, linear systems have real and
imaginary components that are related as follows:
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Figure 7. Estimate of the non-linear parameter k
0
k
1
(u) in System 2 with two cubic hardening sti!nesses to

ground at d.o.f.s 1 and 2 using the truncated data.

Figure 8. Association between the imaginary error in the non-linear parameter estimate and the frequency
response function between the observed non-linear function (X

n1
(u)) and the unobserved non-linear function

(X
n2

(u)) for System 2: (a) Imag (k
0
k
1
); (b) Mag (HN

1
N

2
).
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Figure 9. Hilbert transform causality constraint relationships for System 1 parameter estimate, k
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Equations (7) and (8), constitute an additional piece of information which can help
diagnose spatial truncation errors. If the FRF parameter estimate does not satisfy these
equations, there may be truncation errors in the estimate(s). For instance, the Hilbert
transform causality constraint plots for the linear FRF estimates of System 1 are shown in
Figure 9. Note that the real and imaginary parts of the estimate in the system without
truncation form a Hilbert transform pair. In contrast, the Hilbert transform causality
constraint plots for the linear FRF estimates of System 2 are shown in Figure 10. The
causality constraints for these estimates are violated because of the unobserved dynamics at
d.o.f. 2; therefore, the estimates are incorrect. This is evident in the distortion near the "rst
mode of vibration in the lower plot of Figure 10.

2.3. SYSTEM 3

The value of MB
n1

N for System 3 is the same as for System 1, [1 0]T. MB
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equal to [1 !1]T ; therefore, the "rst line of equation (1) for System 3 is given by
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Figure 10. Hilbert transform causality constraint relationships for System 2 parameter estimate, k
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(11) for System 3 is very similar to equation (6) for System 2 except the correlated noise due to
truncation is di!erent in each system. The NIFO procedure is also expected to fail for System 3.

The results of the NIFO procedure for System 3 are shown in Figures 11 and 12. Note the
similarities with the results for System 2 in Figures 6 and 7. The most signi"cant di!erence is
in the accuracy (i.e., smaller imaginary part) of the non-linear parameter estimate for System
3 when compared to the estimate for System 2 (refer to Figures 7 and 12). In fact, the
estimate is approximately equal to 5e5 N/m3 from 0 to 6 Hz and 0 to 20 Hz, and the error is
less severe near the second mode of vibration than for System 2.

Figure 13 shows the FRF between the observed and unobserved non-linear functions for
System 3. The parameter estimate for System 3 is more accurate than for System 2 because
the correlation between the observed non-linear spectrum, X

n1
(u), and the unobserved

non-linear spectrum, X
n2

(u), is less for System 3 than for System 2 (cf. compare Figure 13
with Figure 8). These results are generalized in the next section.

2.4. GENERAL SYSTEM

For general m.d.o.f. non-linear vibrating systems, system identi"cation and parameter
estimation are always subject to spatial truncation. Common examples of spatial truncation



Figure 11. Comparison of the true frequency response function of the underlying linear system, the measured
frequency response function of the non-linear system, and the estimated frequency response function of the
underlying linear system using NIFO for System 3 with a cubic hardening sti!ness to ground at d.o.f. 1 and a cubic
hardening sti!ness between d.o.f.s 1 and 2: **, linear system; - - -, non-linear system; ) ) ) ), linear estimate.
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include:

f Dynamics between observed d.o.f. and the d.o.f. to which non-linearities are attached (e.g.,
Systems 2 and 3 above).

f Unmeasured dynamics at d.o.f.s along multiple axes (e.g., uniaxial accelerometers are used
instead of triaxial accelerometers).

f Unmeasured dynamics at rotational d.o.f.s (e.g., rotational motions across engine mounts
are not measured).

f Unmeasured or unused portions of the state (e.g., non-linear function of the position is
used instead of the actual non-linear function of the velocity).

f Unmeasured or unknown initial conditions on the states.
f Unmeasured motions beyond the dynamic range of sensors.

Spatial truncation in vibration data can produce poor estimates of non-linear parameters
and underlying linear FRFs. When the NIFO procedure or any other frequency domain
identi"cation technique is used, truncation can be diagnosed by considering the following
points:

1. The non-linear parameters k
1
(u) should be real when the non-linear elements are

assumed to have parameters of a speci"c form.
2. The real and imaginary parts of all nominal/underlying linear H

¸pq (u) FRF estimates
should satisfy the Hilbert transform causality constraints (equations (7) and (8)).

3. The estimates of the nominal/underlying linear FRFs H
¸pq (u) and H

¸qp (u) should be
equal (reciprocity).



Figure 12. Estimate of the non-linear parameter k
0
k
1
(u) in System 3 with a cubic hardening sti!ness to ground

at d.o.f. 1 and a cubic hardening sti!ness between d.o.f.s 1 and 2 using the truncated data.
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4. The estimates of the nominal/underlying linear FRFs H
¸pq (u) should be

approximately equal to a measured set of FRFs around the nominal operating point
of interest.

5. Partial and ordinary coherence functions should account for all of the energy in the
output due to the external forces and the internal non-linear feedback forces that can
be observed [9].

6. The nominal/underlying linear FRF estimates and the non-linear parameter estimates
should be invariant for di!erent excitation levels.

7. The autocorrelation function of the residual in the frequency domain estimate should
be an impulse function (i.e., the residual should be white noise that is uncorrelated with
the input).

By implementing these ideas, fairly accurate parameters for complicated m.d.o.f.
non-linear systems with multiple non-linearities can be estimated as in reference [8]. These
seven evaluation criteria are in keeping with the tenet of experimental dynamics mentioned
earlier: make all the right measurements and use data e$ciently and completely. For
example, the fourth and sixth points in the list above suggest that additional temporal data
can help to diagnose and partially compensate for spatial truncation. In particular,
measured system FRFs for relatively small input levels around the nominal operating point
help to characterize truncated dynamics, whereas input}output data sets for various input
levels can be used to actually model the truncated dynamics. These ideas are demonstrated
next for System 3.



Figure 13. Association between the imaginary error in the non-linear parameter estimate and the frequency
response function between the observed non-linear function (X

n1
(u)) and the unobserved non-linear function

(X
n2

(u)) for System 3: (a) Imag (k
0
k
1
(u)); (b) Mag (HN

1
N

2
(u)).
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2.5. PARTIAL COMPENSATION

Although spatial truncation errors can be diagnosed using techniques described in the
previous section, the errors cannot be completely eliminated. Moreover, it is generally not
practical to recover from a poorly planned experimental dynamic test. When the d.o.f.s are
not chosen correctly in a complicated system (e.g., automobile suspension and chasis), there
may be extreme truncation and numerous sources of correlated noise. This makes it
practically impossible to estimate accurate parameters. It is recommended to instrument
systems of this type with su$cient sensors and actuators to prevent spatial truncation.

Partial compensation of the correlated errors due to spatial truncation can be achieved in
some instances. In particular, when non-linear internal forces are uncorrelated over certain
frequency ranges, the parameter estimates within these ranges are fairly accurate and can be
used to iterate using the constraints discussed in the previous section. For instance, the
spectral mean of the estimate in Figure 12 over the low- and high-frequency ranges matches
the true parameter value.

It may also be possible in many instances to use the parameter estimates in Figure 1 to
predict dynamic behaviour. For example, even though estimates of the real and imaginary
parts of the non-linear parameter estimate for System 3 are inaccurate, the parameters do
accurately describe the vibration response for the given input type and amplitude. Moreover,
if the input types and levels are similar in a di!erent vibration test, the parameter estimates
can be used along with measured data to predict the actual response of the system.

Multiple temporal data sets can also be taken to help characterize and identify the
truncation dynamics. For example, Figure 14 shows the surface which is generated by
exciting System 3 with 1, 2, 4, 8, 16, and 32N broadband random inputs and then



Figure 14. Truncation surface for System 3 estimated for six di!erent excitation levels.
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approximating the truncation dynamics from equation (11):
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HK
L11

(u) in this expression is the measured estimate of the underlying linear FRF for
small input levels around the nominal point and kL

1
(u) is the estimate of the non-linear

parameter for the spring to ground at d.o.f. 1. Recall from Figure 12 that the estimate at low
and high frequencies is approximately equal to the true value, 5e5N/m3. When taken
together, the underlying linear FRF, HK

L11
(u), non-linear parameter, kL

1
(u), and the

truncation surface in Figure 14 form a complete non-linear impedance model of System
3 over the input range from 1 to 32 N. This technique for identifying a forced response
impedance model of a system in spite of spatial measurement truncation is similar to the
restoring force approach by Masri et al. [11].

3. SUMMARY AND CONCLUSIONS

Spatial truncation in experimental models of vibrating systems has been explored and
insight has been given for diagnosing correlated errors associated with truncation. These
errors can be diagnosed and sometimes eliminated by utilizing input}output data in
addition to information about the assumed model including: the form of the non-linear
parameter estimates; Hilbert transform causality constraints and reciprocity constraints on
the estimates of the underlying linear FRFs; additional temporal data for di!erent
excitation levels (truncation surfaces); and the correlation of the residuals in the frequency
domain estimates. The main conclusion is that non-linear vibrating systems should be
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instrumented with su$cient sensors to avoid truncation and to estimate accurate
parameters.
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APPENDIX A: NOMENCLATURE

d.o.f.(s) degree(s) of freedom
s.d.o.f. single degree of freedom
m.d.o.f. multiple degrees of freedom



SPATIAL TRUNCATION 161
NIFO nonlinear identi"cation through feedback of the outputs
N

o
number of output (response) degrees of freedom

N
i

number of input (forced) degrees of freedom at which the input is non-zero;
there are N

o
total input degrees of freedom

N
n

number of non-linear elements in the model
FRF(s) frequency response function(s)
Mx (t)NN

o
]1 measured output time history vector of length N

oMf (t)NN
o
]1 measured input time history vector of length N

oMX (u)NN
o
]1 linear Fourier spectrum of the output vector

MF (u)NN
o
]1 linear Fourier spectrum of the input vector

[H
L
(u)]N

o
]N

o
frequency response function matrix of a linear or linearized system

H
¸pq (u) frequency response function between input d.o.f. q and output d.o.f.

p for underlying linear system
H

pq
(u) frequency response function between input d.o.f. q and output d.o.f. p

k
i
(u) scalar non-linear parameter for non-linear element i

X
ni
(u) scalar non-linear function of the outputs for non-linear element i

MBniNN
o
]1 vector of impedance with non-linear coe$cient factored out to yield entries of 1 and

!1 only; associated with non-linear element i
F[ )] Fourier transform operator
H[ )] Hilbert transform operator
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